Calculating All Pairwise Similarities
from the RCSB Protein Data Bank:
Client/Server Work Distribution
on the Open Science Grid

TR-09-03
December 10, 2009

N
[eCl

RENCI Technical Report Series

http://www.renci.org/techreports

Chris Bizon, Renaissance Computing Institute,
University of North Carolina at Chapel Hill

N
rencl

RESEARCH \ ENGAGEMENT \ INNOVATION

Andreas Prlic, RCSB PDB Protein Data Bank
University of California, San Diego

[-
“PDEB
L
[

PROTEIN DATA BANK

Calculating All Pairwise Similarities from the
RCSB Protein Data Bank: Client/Server
Work Distribution on the Open Science Grid

Chris Bizon, Renaissance Computing Institute, University of North
Carolina at Chapel Hill

Andreas Prlic, RCSB PDB Protein Data Bank University of California,
San Diego

Introduction

Proteins can have various degrees of similarity. If two proteins show high similarity in their
amino acid sequence, it is generally assumed that they are closely evolutionary related.
With increasing evolutionary distance the degree of similarity usually drops, but proteins
can still show similar activity in the cell and have an overall similar 3D structure, even if the
sequence similarity is low. The detection of such remote similarities is important in order to
infer functional and evolutionary relationships between protein families and is a core
technique used in protein structure bioinformatics. The goal is to establish regions of
equivalence between two or more molecules.

The RCSB Protein Data Bank (PDB) is a leading primary database that provides access to
experimentally determined protein structures, nucleic acids, and complex assemblies. PDB is
a vital part of the infrastructure supporting biomedical science worldwide and is used by
around 200,000 unique scientists per month.

While protein sequence comparisons can be computed quickly, the calculation of protein
structure alignments is much more time consuming. The RCSB PDB has recently started to
add new tools to the site, that allow users to quickly identify protein sequence neighbors
and run pairwise protein structure comparisons. In order to allow users to also quickly
identify more distant 3D relationships the goal of this project is to provide a pre-calculated
set of all vs. all 3D protein structure alignments.

Figure 1: Structural alignment of thioredoxins from humans and the fly Drosophila
melanogaster. The proteins are shown as ribbons, with the human protein in red, and the
fly protein in yellow. Generated from PDB IDs 3TRX and 1XWC. (Image taken from
http://en.wikipedia.org/wiki/Structural_alignment)

Conceptually, calculating many pairwise similarities is no more complicated than calculating
a single similarity. However, the size of the calculation will dictate the practical means that
must be used to solve it. Given that 61000 protein structures inhabit the PDB, with approx
130.000 chains, the initial estimate for the number of similarities would be 8.4x10°
comparisons. This nr of comparisons can be reduced, by using obvious sequence similarities
and selecting representative structures from sequence clusters. Assuming that proteins
with very similar primary sequences will also have similar three dimensional structures, we
can let a single protein stand in for a group of proteins with similar sequences. This is
accomplished by using Blastclust to calculate the sequence clusters (detailed strategy
documented on PDB web site). Additionally, because alignments are symmetric, giving the
same result for protein A vs protein B and protein B vs protein A, we can reduce the number

http://en.wikipedia.org/wiki/Thioredoxin
http://en.wikipedia.org/wiki/Drosophila_melanogaster
http://en.wikipedia.org/wiki/Drosophila_melanogaster
http://www.rcsb.org/pdb/explore.do?structureId=3TRX
http://www.rcsb.org/pdb/explore.do?structureId=1XWC

of required similarity calculations to 140 million. Additional complexity is added by multi-
domain proteins. For these it will be necessary to provide alignments for the whole
sequence as well as for the composite domains. Estimating that each pairwise calculation
will require 2 seconds leads to an overall estimate of ~500 CPU weeks.

Calculation of these pairwise similarities, then, is structured as a series of short calculations
that are independent of one another. However, the sheer number of such calculations
leads to a prohibitively long run time. This combination of factors makes the present
problem a good candidate for a solution via distributed computing, in which a large number
of processors each solve a small part of the matrix independent from one another.

In particular, we have used the Open Science Grid (OSG) as the platform for performing
these calculations. The OSG, funded by the Department of Energy and National Science
Foundation, is the US contribution to the worldwide Cyberinfrastructure to support data
analysis for the Large Hadron Collider. It comprises tens of thousands of processing cores
across more than 80 university and government labs. One component of the OSG is the
NSF funded Engagement Program, whose purpose is to bring the power of the OSG to new
science domains beyond high energy physics. The Engagement team has successfully
demonstrated providing millions of CPU hours via OSG to a diverse set of projects in
numerous science domains.

A Client/Server Solution on the Open Science Grid

The Simplest Approach and Its Problems

The basic questions that must be answered in creating a distributed computing application
are:

1. How will the work be divided among available compute nodes?
2. How will data be staged to and from the compute nodes?

Each protein in the PDB can be exported as a single file called a PDB file. In the simplest
implementation of pairwise similarity calculation on the OSG, we would map one pair of PDB
files to each OSG job. In other words, each cell in the similarity matrix would be calculated
by a different job. The two PDB files would be staged to the remote processing core at
runtime and cleaned up after the job completed. Though conceptually straightforward, this
solution is not practical for several reasons. Most importantly, each job has a latency. This
latency arises from finding available processors that match the job requirements, waiting in
queues, and staging input and result files. To maximize the work-to-latency ratio
(assuming fixed job latencies), we prefer longer jobs. In practice, we typically aim for jobs
that last between 4 and 12 hours. This gives a good work/latency ratio, while staying below
any time limits imposed by owners of OSG resources.

The next stage in sophistication, then, would be to bundle up a group of PDB files, stage it

into the remote processor, and calculate all similarities between these protein. Creation of
such statically defined jobs is a standard paradigm in work on the Open Science Grid, but in
the case of the current problem, it has several shortcomings.

The first, and most fundamental difficulty is the management of such a large computation.
Assuming that we could solve the work-balancing issue described below, we would divide
the work into 12600 jobs each running for 8 hours. Each job requires numerous files, such

as submit files, execution scripts, and input and output data files. A vast number of files
would be stored to disk and have to be organized and coallated in some way. All of this
data management is further complicated by the fact that these files will not be on the users'
home machine, but on a submit host for OSG, increasing the distance between the user and
the calculations. Finally, there would be a need to monitor the overall state of this
computation. While the infrastructure for submitting jobs would withstand the large
number of jobs, it does a poor job of helping users understand the decomposition of their
work into jobs. A user does not know, without extra work, what portion of the total work
has been submitted, has succeeded or failed. This management stands as a further
obstacle to a researcher who simply wishes to perform calculations, not manage distributed
computations.

The second difficulty in static job definition is in the creation of equal-length jobs. if each
pairwise protein similarity calculation took an equivalent amount of time, we could easily
divide PDBs among jobs with the assurance that each job would take a similar amount of
time to complete. However, the similarities being calculated are dependent upon the size of
the proteins; the proteins in the PDB range from small proteins consisting of 20 amino
acids, up to several hundred amino acids long protein chains. If no attention is paid to this
variance, we will by chance create jobs with many large proteins, causing jobs that run
longer than allowed by resource owners. To compensate for this, we might include fewer
PDB files in each job. While long jobs would now fall under execution limits, short jobs
would be too short, and latency would again become an important factor in the overall wall
time of the calculation. The problem of load balancing is made still more difficult by the
heterogenatity in computing resources found in the OSG.

The third difficulty is the repetitive staging. Each protein in the calculation is going to be
compared with every other protein. Regardless of how work is split up, this means that the
same protein PDB file will be staged with many jobs. Potentially, many of these jobs will
run at the same site, so that repeatedly staging the same PDB file represents a waste of
network and latency time.

A Client/Server Approach

One approach that addresses these difficulties is to replace statically-defined jobs with a
dynamic client/server model of manging work coupled with pre-staging the PDB data; See
Figure 2.

OSG Site 1 OSG Site 2

mpute Compute
Nodes Nodes

Condor, DAGMan, OSGMM, VDT 1
i

OSG Submit Host

Figure 2: A client/server approach simplifies workflow and data management
for the PDB problem. Standard OSG technology is used to provision the PDB
client package from the OSG submit host to OSG compute nodes. The PDB
client contacts the external PDB server, and is given a chunk of work to do
using pre-loaded PDB data. The results are returned directly to the PDB server.

A server runs outside of the OSG infrastructure. It can access a database that contains
information about all pairwise calculations that need to be run, as well as results for those

that have already been performed. The code that runs on OSG processors is a client for
this server. When one such clients starts, it contacts the server and requests work. The
server knows what work is required, and sends to the client a list of proteins to compare.
The client then performs calculations on the pairs indicated by the server and returns the
results to the server. If the client has run beyond a fixed amount of time (usually about 12
hours), it terminates; otherwise, it requests further work from the server. The client/server
model effectively decouples the process of workflow control and the process of resource
allocation; workflow is controlled by the server, while the OSG stack allocates the client
resources independent of the server.

With this model, the balancing problem vanishes. The client requests further work until it
reaches a fixed time limit. The client will never underrun its time (except in the case of
failures), and will never overrun its time by more than the amount of time required to
service one request. All clients, then, will have the same lifetime, within a window whose
length is bounded by the size of one work request to the server. Making the size of each
request too small will lead to many requests, potentially overburdening the server. In
practice, as long as there is a separation of scales between the most atomic unit of work
and the requested walltime for a client, a balance can be struck during the tuning portion of
development. Note also that this dynamic balancing automatically deals with differences in
processor speed, since we are specifying the time spent on each processor rather than the
amount of work done there.

More importantly, job management is vastly simplified with the client server model. All
inputs and outputs all pass through and are stored on the server; the state of the
computation is known exactly rather than being inferred by looking at job inputs and
outputs stored on disk in many different directories. The ability to deal with failures is
similarly improved. When statically defined jobs fail, the user must either resubmit the
entire collection of jobs, or create a new run containing only the failed jobs, or identify only
the particular calculations that failed, and build a new run of new jobs only containing these
calculations. Those three options trade off user time in diagnosis with computer time in
recalculating successful work, with no optimal solution. In the client server approach, the
server is independent of jobs and runs, and simply operates the unit of work that is
parceled to clients. If a client crashes, or is evicted, whatever successful work has already
been reported to the server becomes part of the solution, no matter the fate of the client.
If a run is successful except for particular calculations, only those calculations will be later
recalculated with neither a waste in computation or a waste in user time. Further, the
server can aggregate failures, identifying work that fails repeatedly for a legitimate reason
from the random failures endemic to distributed computing.

Furthermore, the job management burden is reduced for the user because they can host the
server on their own machine. In the simple statically-defined case described above, a user
must double stage data in and out of the OSG. First, the data must be moved from their
local machine to a submit host. The data flows from there to OSG processors for
computation and results are staged out to the submit host. From the users' perspective
there is an extra management step in getting useful results back to their home institution.
In the server-managed paradigm, data flows directly from and to the users' server. The
submit host is still used to start a set of jobs and monitor whether they are running, but this
resource managment is significantly easier than the data and work management handled by
the server.

The problem of repetitive staging could be addressed without recourse to the client/server
model. Nevertheless, the new model does make implementation of the solution more
straightforward. In particular, we make use of shared filesystems on OSG resources.

Many OSG resources provide a file system that can be used to store results to save from
run to run, called OSG_DATA. We make use of this system by first pre-loading all PDB files
into a specified location on OSG_DATA. When a client requests work from the server, it
receives not a full PDB file, but a reference to a PDB file that has been preloaded into
OSG_DATA. The client then retrieves the PDB file from the local file system, saving network
trafficc. However, the PDB changes over time, with several hundred records added or
modified every week. The client may find, therefore, that it is asked to use a PDB that has
not been preloaded. In this case, the client can download the PDB file from the server and
add it to the cache of files in OSG_DATA. Subsequent clients needing that PDB at that site
will then find the PDB in the normal location.

Implementation

The solution described in a general sense above is implemented against the infrastructure
background of the Open Science Grid and tools provided by the Engagement Virtual
Organization. In particular, the solution is composed of three software packages. The first
is a web server running at the PDB, which is capable of doling out jobs and receiving
results. The second is a ODB client that is capable of communicating with the server and
performing the alignment calculations. The third component is the group of scripts that
interact with the Open Science Grid infrastructure to provision the PDB client to the
appropriate OSG compute nodes. We shall discuss these in the reverse order, following the
order in which a typical run operates.

Work on the OSG is organized into jobs and runs. A job describes a unit of work to be
staged into a compute node, run, and staged out. A run is a collection of these jobs,
possibly containing interdependencies. In the present case, there are no interdependencies,
so a run is merely a collection of jobs that can run independently of one another. Given
the existence of server and client packages, the first problem is getting the client package
to a large number of OSG compute nodes where it will be able to run. The client will require
certain features of the OSG node. In particular, the node must have sufficient memory to
run the client, it must have a java runtime available, and we only want to run on sites
where the PDB data has been preloaded. Finally, the client will need to be able to make
HTTP connections to the server.

Resources on the Open Science Grid are controlled entirely by their owners, implying that
no particular set of circumstances can be guaranteed. At one site, outgoing connections
may be allowed, while being forbidden at another. Similarly, some sites may have a shared
filesystem allowing data preloading, while other sites may not. Finally, software versions
and hardware vary widely. To deal with this variation and make sure that the client is
provisioned to sites where it will be effective, we make use of the Open Science Grid Match
Maker, or OSGMM (http://osgmm.sourceforge.net/). OSGMM gets site information from
the Resource Selection Service (ReSS), and augments it with information from OSGMM's
verification jobs to produce a final site description. This allows users to submit OSG jobs
using the widely known mechanism of condor submit scripts, and take advantage of the
powerful Condor matchmaking facilities.

requirements = ((TARGET.GlueCEInfoContactString =!= UNDEFINED) \
&& (TARGET.Rank > 300) \
&& (TARGET.OSGMM MemPerCPU >= (500 * 1000))

\
&& (TARGET.OSGMM CENetworkOutbound == TRUE) \

&& (TARGET.OSGMM SoftwareGlobusUrlCopy == TRUE) \
&& (TARGET.EngageSoftware Java v15 == TRUE) \

&& (TARGET.OSGMM Data PDB == TRUE) \

&& (

isUndefined (TARGET.OSGMM Success Rate andreas) \
|| (TARGET.OSGMM Success Rate andreas > 75)) \
)

Listing 1: The condor submit script defines requirements for the PDB job. In particular, we
include information about required memory, that the site allows outward network traffic,
and that we have access to globus-url-copy, java, and the preloaded PDB data. Further, we
only want sites that have performed well in recent tests by the OSGMM (leading to a high
Rank), and those that have a high success rate for this user's jobs.

We submit one condor script with such requirements for each job. The collection of jobs
into a run is handled by the DAGMan meta-scheduler for condor. DAGMan allows condor
jobs to be managed at a higher level, including groups of jobs whose dependencies form a
directed acyclic graph. Here, the dependencies are nil, but DAGMan provides a simple
mechanism for managing the multiple concurrent jobs as a single run. When the user
submits the dagman script to condor, it becomes aware of the multiple job-level condor
scripts and begins submitting them. When an OSG job is started from one of these condor
jobs, it is first matched with a usable resource as described above. Once this is
accomplished, the job is transferred to the OSG site, where it enters a local provisioning
system, and eventually lands on a compute node.

In the condor submit script, we define an executable and tell condor that we need to
transfer this executable to the compute node. This remote execution script, then, is the
code that will be run on the remote OSG node; its stdout and stderr will be automatically
returned to the submit host upon job completion or failure. Our remote script has several
responsibilities. First, it surveys the node on which it landed, running uname, ulimit, env,
and catting /proc/cpuinfo and /proc/meminfo. The output of these commands is invaluable
in the case when a job fails.

The second responsibility of the remote execute script is to bring the PDB client from its
home on the submit host. The client is retrieved with GridFTP by the globus-url-copy
command. While the client could be sent to the compute nodes directly with the execution
script, we have found that GridFTP scales better in staging data to multiple sites
simultaneously, and we use it for anything other than the execution script itself. Note also
that this allows updates to the client with no change to the machinery of submitting jobs.
In principle, the client could indeed be hosted along with the PDB server, but we do require
the presences of a GridFTP server. Practically, this means that the submit host is the most
likely location from which to serve the client.

Once the client has been pulled from the submit host, the third responsibility of the
execution host is to run the client. Finally, once the client has run, it is the responsability
of the execute script to clean the temporary directory in which we have been running. Many
sites will not immediately delete this work directory when a job finishes, in case the user is
relying on the results of one job feeding another. Since we have no dependencies, we
remove the directory to preserve disk space on the site. Note that in a normal OSG run, we
would include stageing out data as one of the resonsabilities of the remote execution script,
but in the current case, the returning of results is handled by the client directly.

The client is a Java implementation of the FatCat algorithm (http://fatcat.burnham.org/
Yuzhen Ye & Adam Godzik. Flexible structure alignment by chaining aligned fragment pairs

allowing twists. 2003. Bioinformatics vol.19 suppl. 2. ii246-ii255.). It communicates with
the server via a simple RESTful - XML over http protocol. The client accepts a command line
argument describing how long it should run, the location of the local PDB data files, and an
ID. The client asks the server for work, performs the work, and returns the results back to
the server. It then requests more work, until it passes the prescribed time limit, at which
point it exits. When the server requests a certain alignment, it does not send the PDB files
to the client. Instead, the PDB client looks for the PDB files in the location indicted by the
command line argument. The ID is constructed from a run ID, a job ID, and the name of
the OSG site. It is transmitted with messages to the server, allowing the server to track the
amount of work performed per run or job, as well as how much work is done by particular
0OSG sites.

The server is based on Apache Tomcat. It does not attempt to keep track of the state of
clients. Instead, it simply serves work as requested and accepts results. Client IDs are
recorded, but only for accounting purposes. Because the server knows what jobs it has
received results for and what work it has sent out, it can easily coordinate the jobs simply
by not sending out the same set of work to multiple clients. In addition, the server can be
instructed to send out a kill signal in response to a request for work. A client receiving this
signal shuts down with a successful exit signal, so that it is not rescheduled by condor.
This kill signal was implemented in response to the observation that clients sometimes did
not stop when a job was removed via condor.

The communication interface between the server and client is driven by the requirement
that all messages must be client initiated HTTP. While many sites will allow outgoing-
initiated messages, most will not allow incoming-initiated messages for security reasons.
Further, the OSG sites usually reside behind firewalls with many ports blocked by default,
but most open port 80 for HTTP traffic.

Performance Tuning

With these software components in place, we can set several parameters to increase the
performance of the application and discover the rate-limiting step. Chasing bottlenecks is
aided by the ability to analyze a distributed run as described below. In the condor submit
scripts, we specify a minimum amount of RAM as 500MB. We want this number to be as
small as possible, since this will disallow the smallest number of processors, increasing our
throughput. To this end, the client was optimized to minimize the amount of memory
required; with a 500MB limit, very few processors are removed from the pool of allowed
resources. In a normal OSG application we would also tune the length of a run by
portioning the data evenly across processors. With the present client/server model, this is
not required, since each client will simply run for a fixed amount of time and then exit. We
simply set the maximum allowed time to 50% higher than we expect the client to run.

With jobs able to make effective use of OSG resources, the remaining performance tuning
concerns the client/server interaction, and the server backend. Because there is a single
server doling out work, that server can easily become a bottleneck. If 1000 clients are
running concurrently, each working for one minute before requesting new work, the server
will have to deal with approximately 1000/60 ~ 17 communications per second. This
indicates several features. First, we will be able to reduce the spacing of communications
by increasing the amount of work given to each client. Second, we will need to optimize the
rate at which the server can store results and hand out the next portion of work. Finally, it

is likely that the server will, in the end, be the rate limiting step, rather than the number of
processors that we can access.

The OSG allows to calculate a large amount of data in short time. When setting up the
server to consume the results it is important to also develop a backup strategy for this
incoming data. Copying several hundred GB of data across file systems takes a while. At the
time of writing we are still working on improving the backup strategy for the server and are
exploring MySQL replication and binary file system replication strategies.

Results

Overall Metrics

A total of 140 million alignments have been calculated for the all vs all comparison. Out of
this total, 122 Mio. have been calculated on the OSG, the rest on other resources. The
calculations on OSG have consumed ~102000 CPU hours. This includes initial test runs in
order to scale up the central submission server. The average calculation time for a pairwise
alignment was about 3 sec per alignment, which is more than was estimated in the
beginning. Reasons are probably inefficiencies in the initial runs (both server and client),
which has been fixed in the course of the process. The second half ran faster than the
estimate.

The capacity at the present is to align 10-20 mio alignments per day. Test runs with 1000
parallel jobs caused occasional write-bottlenecks on the central submission server. As such,
usually 800 jobs were submitted to OSG during a run.

Run PostMortem: dagmanalyze.py

As a run proceeds, condor creates several log files indicating significant events in the run,
such as jobs starting, completing, being evicted, and so on. Though the information is
relatively complete, it is not organized in a useful way. In particular, we would like to be
able to easily answer these questions:

1) How many concurrent processes are running or have run?
2) Did jobs spend more time running or in the queue?

3) Were jobs evenly balanced in run time?

4) Were there a significant number of failures?

5) Were failures concentrated at a particular site?

6) How were jobs distributed across sites?

To aid in providing answers to such bird's-eye view questions, we have created
dagmanalyze.py, a simple python script that parses the dagman log file and produces
several charts using the matplotlib library. The following images are those created by
dagmanalyze from a run consisting of 300 jobs.

The overall contours of the run are shown in Figures 3 and 4. In figure 3, each job within
the run is a horizontal line, with the horizontal axis indicating wall time. When the job
enters the queue, the line begins in blue. When the job starts running, the line becomes
red. If the job is sent to the queue again, the line becomes red. We can see immediately
that there are several jobs that did not complete until well after the majority. Furthermore,
we can see that these are cases where the job re-entered the queue at least once. Figure 4

displays similar information but aggregated across jobs. In figure 4, the blue line traces the
number of jobs queued at any moment, while the red line shows the number of jobs
running. In this figure, we can see the rate at which jobs move from queued to running,
and the number of running processors that are sustained over time. In this case, we see
that we can simultaneously run as many processors as we have asked for, suggesting that
we could increase the number of processors on a subsequent run.

Job Timelines

350 . .
—— Queued
Running

300 ¢ e ——
- 0 O
| —

- 0 0 0 0 0 0 000 0 0O0O0O0O0O0O0O0O0O__—=
I,
..
- @ O O 0O 0O0O0O0O0O0O0O@O@O@ @ =

- =M

2507 e —
...
I
I
I o
I
I, ...
|

200 I | —

9 - 1]
0 I —
2‘ I —

150 I - @ @ @ @ @ @ @ @O@O@0O@O@O@OO==8
I ————————————
| —
I —
| —

— 0 0 000 0O}
| —
I —

IOO I .
|
— @ @ @@ @0@O0O0O0O0O0O0O0O0O@Q=-——

- =]
@ @ 0 0 0 00 00 0O0O0O0O0O=—-—
I
S ———
I ————

50 F

%
o,

D ! ! 1 !
C C C C C C C C C G C

.cﬁ'\s‘ P J;}Q"S‘ .{]Q\S‘ o BQ’\S‘ ‘GQ’\S‘ .{]Q\S‘ ,90\3,\ ﬂQ\S‘ .u‘i‘-'ﬁ ﬂQ\S‘

b;.QQ‘ x%‘gg_ _.L-’L'::!'Q. OTF:Q. 0&'.0 . oy ':.':Q‘ 00' QQ" .QF‘“ .&{}‘QQL

A

o . . r
NN s S S

]
%

Figure 3: Job timelines for a run of 300 jobs.

Number of jobs running/queued over time. Peak Running=300
300 . : : : : : . : .

E—— —
— Queued |
—— Running |
|
250+ ¢ |
H \
|| ||
1
' |
200} | |
| |
|
150 | '|
|
|
100 | || |
| |
II
50 (J H
1
|
| i L—‘-— e T —
G G L <G G 9 L L L - 4G G
O oI T T o U o0 o o oI o oY
w0 g8 8T 8 8T 0% g 8% 8% o ©
At 4] ! S of ! 4] ot L\ of

Figure 4: Queued and running jobs over time indicate scale up time and processor
limitations.

Figure 5 displays histograms of run, queue, and wall times for the jobs in the run. Because
the client is time-based, we can see a very tight distribution of run times. A distribution of

queue times exists, but on the whole, the queue is adding about 1/7 of the total wall time
per job.

300

250}
w2001
5150}
S 100}

Counts
o5 888

Number of Jobs = 317

300 400 500 600 700 800
Execution Time {min)

L . |
150 200 250 300
Queued Time (min)

1000 1500 2000 2500
Total Time (min)

Figure 5: Histograms of run times, queue times, and wall times are used to diagnose

workload balance and latency cost.

Figures 6 and 7 display the disposition of runs across different OSG sites, with slightly
different focus. Figure 6 shows the outcomes of runs at each site, so that we can look for
sites with high failure or eviction rates. In this case two sites have a 100% failure rate,
indicating that there may be a problem, e.g. with memory limits. Figure 7 is geared
towards determining which sites are contributing the most CPU time. For this run, the
Fermilab sites are contributing the lion's share of the CPU hours.

mmm Successful
m Failed
mm Evicted
== Running

250
200
150
100

50

npa-asimday Topubswo

npa’||auwiod e 1sAu

npassiwajo day T00ssIiwn

npauon-doy

npapleniey pauriuedssm

npa nirpubeiayiuenb gw

npa"1Wreswy 1020

npa-ayaneonfemalebpn

nob-jeuy 1hsopubiuuay

npa-anpind- el bso

nobjeuy TBsoaduw

nobrjeuy ganbsoswo

[=]

(sJnoy) 2wl UoiINIaxXa |10l

O:vw_um_a.gwc_gur_mmeu

[=] (=] (=] (=] (=]
[=] (=] (=] [=] (=] (=]
o] o N =1 o
m ~ ™~ — — 2l
(=] = (=] = (=]
[Ta] (=] uwy (=1 n
™~ ™~ — —

unJ sgol

{npajjpwioaoey 15U

1npassiwajo-day Toossiwn

npauon-doy

npapleatey pawrAuedsn

npa nirpubeiayiuenb gu

npa"1Weswy 1020

npa-aysn°jaonfemalebpn

nob-jeuy 1hsopubiuay

npa-anpind- e bso

nobrjeuy Thsoaduw

nobrjeuy gasbsoswo

Site dependent statistics are used to determine site-dependent problems

Figures 6 and 7

and overall effectiveness.

Finally, figure 8 shows the number of times that each job must be run. In many cases,
though not the present case, particular jobs will be associated with particular data. If there
is a problem with one chunk of data, then that job will fail repeatedly. This histogram is a
tool for helping find out whether there are jobs that are failing repeatedly. In this case,
most jobs are requiring only a single run to complete successfully, with decreasing numbers
needing to run more frequently.

How many times does each job run? Total number of jobs = 300

300

250

200

Number of jobs
[
Ln
o

100

50

%

2.0 2.5 3.0 35 2.0 2.5
Number of times a job is run

Figure 8: The number of jobs that must be multiply restarted indicates an extra
computational cost, which can be further diagnosed and improved upon.

Limitations of the server/client approach

The client/server approach introduces a real bottleneck into the system via communication
with the server, which must deal with many clients simultaneously. In the current
implementation, this also becomes the overall work bottleneck. The limiting factor is the
rate at which the central database management system (MySQL is being used here) can
process the incoming data. Some develoment time had to be spent during this project on
setting up an optimized infrastructure that can scale. At the present the following steps
have been implemented in order to provide optimal I/O performance:

¢ MySQL contains a table that lists all alignment pairs to be computed. Once a pair has
been calculated the row for this alignment is updated with summary scores that give
a quick estimate if the similarity between the two proteins is significant.

e The detailed alignment files are stored on hard drive, that is physically independent
of the one that contains the MySQL database files.

e Caching: SQL access is reduced by caching data in memory. E.g. the list of alignment
that have not been calculated is kept in memory and a large batch of new alignments
is loaded into memory when required.

e Batch processing: A job that is run on OSG sends back results back to the centralized
server every 400 alignments (roughly every 15 min.). The SQL update statements
are performed as a batch SQL update as well.

e Thread synchronization: In order to avoid too many parallel incoming connections
from writing to the database and file system at the same time, all incoming requests
are thread synchronized and only 8 parallel write/update operations are allowed at
the same time. The nr 8 matches the number of available CPUs on the system.

e The MySQI query optimizer has been investigated to make sure the correct indexes
are used for accessing the data. This allowed to identify a probably MySQL specific
issue that has been affecting performance. If multiple indexes are available for a
column, mysql arbitrarily selects one of them. This can affect select and update
speeds, e.g. if multi column indexes should be used, but MySQL uses a one-column
index instead. In order to avoid this, all one-column indexes have been removed
from our schema, and all DB access is through the multi column indexes.

As mentioned ealier, with these optimisations in place, the central server is at the present

capable of communicating efficiently with 800+ concurrent jobs. If 1000 jobs are being run
in parallel occasional write bottlenecks can cause clients to have to queue, resulting in less
efficient use of the available CPU.

A useful feature during the development of the server was a "kill switch" I.e. if a critical
error happens on the central server that requires immediate stop of all calculations, it can
send a kill signal to all jobs, resulting in an their termination. This was used during the
initial development of the server to identify and remove components that had bad
performance. The kill switch can also be used as an emergency break. If the queue of
waiting clients gets too long, selected clients can get killed in order to ensure that the
overall system is used efficiently and that clients only have to spend a minimal amount of
time waiting for responses from the server.

Conclusion

We have described the use of a client/server architecture for managing large calculations in
the open science grid. While the client/server approach offers benefits in terms of workload
distribution, its main advantage is in workflow management. The main disadvantage is the
bottleneck introduced through the centralized server. Some development time had to be
invested in order to come up with a server that can hold up to the scale of calculations that
are possible on the grid.

New users of a system such as the OSG are often distracted from their computation by the
need to learn how that system manages workflow. In cases where the workflows are large
or complicated, the workflow management itself can itself consume significant user time
through the staging and managing of files.

In standard OSG usage, the user often works on the submit host rather than their home

machine, and manages workflows by managing files on disk; state of multi-run
computations is managed implicitly by the presence of absence of files on disk.

In the client/server approach, workflow management is decoupled from processor
provisioning. This allows the user to operate largely from their own computers, using the
submit host only to request more processors. Significantly, computation state is managed
actively; at any time the full state of the computation can be retrieved from the user-owned
database.

Choices about the use of a client/server model in any given application must balance the
advantages of workflow distribution and management with the disadvantages of increased
bottlenecks and server development.

	tech-report-coverpage0903.pdf
	tech-report-author-page
	PDBOSG

