A Cloud-Agnostic Framework for Geo-Distributed
Data-Intensive Applications

Fan Jiang
Department of Computer Science
University of North Carolina at Chapel Hill

dcvan@cs.unc.edu

Abstract—As the demand for Cloud computing trends up, valu-
able datasets are stored in the Cloud across various geographical
regions and Cloud platforms and providers. The distribution of
data across cloud providers imposes three major challenges for
data-driven analysis and applications: the heterogeneity of cloud
resources across clouds; low network throughput over the wide-
area network; and high monetary cost resulting from moving
data in/out cloud regions. In this work we propose a cloud-
agnostic framework named PIVOT that builds on open-source
technologies and abstraction principles to create the illusion
of one single computer for applications and users. We have
deployed a prototype across AWS and GCP and investigated its
effectiveness against synthetic workloads. Using a combination
of advanced middleware techniques and data-locality and cost
aware scheduling strategies we show that PIVOT is able to achieve
up to 4x improvement in network throughput and reduce > 60%
monetary cost.

I. INTRODUCTION

As the demand for cloud computing trends up, a number
of cloud-based platforms have been developed in the industry
and academia to address the increasing needs of data analysis
and processing in the scientific and commercial sectors.

As a result, valuable datasets are stored in the Cloud
across various geographical regions and cloud platforms.
For instance, more recently the National Institute of Health
(NIH) [16] established the Commons Cloud Pilot project to
serve as a platform for technology experts to build the next
generation cloud-based data sharing platform for the biomed-
ical community. To enable this effort three large datasets of
high scientific value were hosted in both clouds Amazon Web
Services (AWS) and Google Cloud Platform (GCP), and made
available to the participants of the consortium with the long
term goal of making it available to the broader community.
Similarly, the National Oceanic and Atmospheric Administra-
tion (NOAA) [17] provide access to real-time and archival
weather radar data in AWS [18] for weather data analysis and
prediction. Scientists however face steep challenges to be able
to use this valuable datasets in ways that will enable new
research and science collaborations.

The distribution of data across cloud providers imposes
three major challenges for data-driven analysis and appli-
cations: (C1) The heterogeneity in resources, networking,
application programming interfaces (APIs) and runtime among
cloud platforms and providers prevents applications from scal-
ing out across clouds, leveraging their unique capabilities and
offerings (Google Genomics [10], SAGE [19]) and executing

Claris Castillo, Stan Ahalt
Renaissance Computing Institute (RENCI)
University of North Carolina at Chapel Hill

{claris, ahalt}@renci.org

close to data. In other words, a user either runs an application
on one cloud or the other but not across; (C2) Without the
ability to scale across clouds in a seamless fashion, the appli-
cations trigger cross-region and cross-cloud data movements,
which can hinder application performance due to low network
throughput over the wide-area network (WAN). That is, to
analyze combined data hosted in two clouds data must be
moved out of one cloud into the other; (C3) Since commercial
clouds monetize egress network traffic, i.e., traffic result from
moving data outside a cloud region within or across clouds,
cross-cloud data analysis can incur prohibitive monetary cost
for large datasets.

Therefore, minimizing the financial burden that hosting data
and running computation in the cloud imposes on the user is
critical to promote the adoption of cloud computing. As the
name implies, egress network traffic cost is incurred when data
needs to be transferred into a different cloud, a different region
within the same cloud or on premise. Later we quantify the
implications of making compute placement decisions that are
oblivious to this cost. At the heart of our research work is the
development of new scheduling strategies and techniques that
factor egress network traffic cost in scenarios where data is
distributed across multiple clouds and/or cloud regions.

Performance management is one other aspect that deter
scientists from migrating their data-intensive applications into
cloud environments. These applications are mainly data an-
alytic workflows consisting of processes with temporal and
software dependencies on each other, which execute on geo-
distributed datasets and may produce new datasets at scale.
Workflow engines such as Toil [39] and Arvados [3] and
others [8] [24] are commonly used in the scientific community
for data analysis. These solutions albeit providing predictable
performance in controlled campus infrastructure have not been
designed to perform well on geo-distributed environments;
their scheduling capabilities are oblivious to both the network
infrastructure that connect compute and storage resources as
well as data locality.

Therefore, despite the existing efforts to host valuable data
in the cloud, the lack of tools and mechanisms to support
data analysis with reasonable performance levels along with
the financial barrier resulting from moving data in and out the
cloud hinders the ability of the scientific community to take
full advantage of these efforts.

To address the aforementioned challenges we propose
PIVOT, a cloud agnostic framework that creates an abstraction

layer over compute and storage resources distributed across
cloud providers to create the illusion of one very large
computer thus hiding the complexity and heterogeneity of
individual providers services and offerings. These resources
are presented to users through an unified API via which data
processing applications such as workflows can be executed
and scaled across resources independently of where data is
located. To achieve this, PIVOT decouples the abstraction and
management of data and compute and builds on advanced
middleware mechanisms that orchestrate how these resources
are utilized jointly to provide applications with acceptable
performance, while taking into account the financial cost
on behalf of the users. A fined-grained resource model for
cloud topology in combination with cost-aware scheduling
algorithms allows PIVOT to place computation close to the
data in order to minimize data movement and egress network
traffic cost. We deployed an open-source based beta implemen-
tation of PIVOT across AWS and GCP and demonstrated its
effectiveness through experiments with synthetic workloads.
Our results show that by using its novel architecture and
middleware mechanisms PIVOT can minimize egress network
traffic cost (> 60%) and improve network throughput up to a
factor of 4x as compared to using traditional cost and data-
locality oblivious scheduling strategies, respectively.

The key contributions of our work are manifold: (1) We
have pioneered a cloud-agnostic framework and architecture
that relies on two decoupled resource models for compute and
data to create the illusion of one single large computer to
users thus hiding the heterogeneity and complexity of cloud
platforms. (2) We have developed middleware mechanisms
that orchestrate these resources in a unified manner thus
enabling the deployment of applications across multiple clouds
without imposing additional burden on the user. (3) We have
developed scheduling algorithms aware of cost and data local-
ity that discern between cloud regions and providers to place
applications close to the data thus minimizing data movement,
improving performance and reducing financial cost. (4) An
empirical evaluation of data-intensive applications in cross-
cloud environments with respect to cost and throughput. To
the best of our knowledge this is a first of a kind analysis on
cross-cloud environments. (5) We have developed an open-
source implementation of this framework that is available to
the community to deploy their own software stack.

The rest of the paper is organized as follows. In Section II
we provide an empirical analysis into the financial burden that
results from placing computations and applications in cross-
cloud environments. In Section III we outline the core archi-
tectural components and capabilities of PIVOT. An application
model that leverages the systems capabilities follows in Sec-
tion I'V. Section V includes a deep architectural and functional
view of PIVOT we outline the PIVOT core capabilities. In
Section VI we provide an overview of the core open-source
technologies that underpin our first implementation of PIVOT
to provide early intuition on the fundamental capabilities that
are needed to address the aforementioned challenges. We
provide a deep evaluation of PIVOT in a real environment

in Section VII. In Section VIII we provide an overview of
research and technical contributions that aim at addressing the
geo-distributed and cloud computing problem also considered
in this work. We outline our next steps in extending PIVOT to
support more complex applications in Section IX and conclude
in Section X.

II. MOTIVATION

To quantify the performance and monetary cost for running
data-intensive applications across clouds, we show in Fig. 1
the proportions of different types of network traffic incurred
on an Apache Mesos [2] cluster deployed across AWS and
GCP. The network traffic is sampled over a total of 1,1500
executions of data-intensive analytic jobs, which consume tens
of gigabytes of data from geo-distributed data repositories
in both clouds for processing. With the default scheduler,
Mesos is oblivious to the location of data and therefore
opportunistically assigns the jobs to resources regardless of
the region and platform where they are provisioned. As a
consequence, long-haul data transfers trigger by workflows
leads to a huge amount of egress network traffic across regions
and clouds. Quantitatively, roughly 90% of the network traffic
travels across regions and clouds, incurring 98.5% of the total
monetary cost for running the cluster. In contrast, only 1.5%
of cost is incurred by compute resources. On the other hand,
data transfers also result in low network throughput and create
performance bottleneck as shortly disclosed in Section VII
(Fig. 5). The challenges motivate us to develop PIVOT, to
allow applications to scale out across geo-distributed regions
in various clouds while retain data locality for efficiency in
both performance and monetary cost.

== Cross-Cloud

/N Cross-region 757 Intra-region

VM Instance
cost

49.4%

]
J1 1
|
T

1.5%

9.8%

Network traffic cost ($)

Network traffic

Fig. 1: Proportions of network traffic and monetary cost for running applica-
tions on a cross-cloud deployment of Apache Mesos cluster

III. PIVOT ARCHITECTURAL OVERVIEW

To provide the initial intuition about the system proposed,
its functionality and construction, following we describe the
core capabilities that underpin PIVOT.

In the previous section we identified three key challenges
that users/applications face to harness cloud capabilities across
the multiple cloud platforms, namely (C1)-(C3). Following,
we describe the three core capabilities that build on each other
to address these challenges. When incarnated into PIVOT,
these capabilities provide a novel and effective solution to

e N\ 8F
2Ry
Z5
Appliance Manager *§ 8
-~
N 1 t /)83
Resource! Data Locality: TN
4 N

Resource Management Layer
(Resource Orchestrator)

Data Management Layer
(Data Registry)
J

\

s N
o @)
ateway

oOMmeOod

VPN Tunnel

VPC Peering
]

(10) ausouby pnojo

Qid W @b
VPC Peering
\ Cross-Cloud Infrastructure

Fig. 2: PIVOT architecture

executing applications on a cross-cloud environment. Fig. 2
depicts a high level view of the PIVOT architecture. These
capabilities can be organized into three core capabilities:

Unification via resource abstraction

For applications such as workflows to seamlessly utilize dis-
parate cloud resources across multiple providers (C1), re-
sources must be presented through a unified interface that
coalesces these resources into a cloud-agnostic environment.

To achieve this PIVOT abstracts both data and compute
infrastructure through widely used open-source technologies;
and, relies on novel middleware techniques to orchestrate
how these resources are managed to support the execution of
applications across clouds.

We borrow widely adopted technologies developed for
much simpler environments to implement our approach.
As such, these technologies alone seldom address the three
challenges we identified present in cross-cloud environments.
To address (C2-C3), we have integrated these technologies
with novel add-on middleware capabilities described as
follows.

Cross-cloud data locality awareness

As described in Section I multi-cloud environments present
unique obstacles that hinder the use of performance opti-
mization strategies commonly used in large-scale distributed
systems [26] [25]. For instance, with data analysis applications
combining data hosted across multiple clouds, moving data is
inevitable. A system capable of supporting such applications
should take into consideration properties about the data includ-
ing its location. Nevertheless, cross-cloud infrastructure is not
only heterogeneous but also opaque therefore limiting cloud-
based systems ability to exploit the physical location of data
when making placement decisions.

To take into account the network performance degradation
resulting from moving data across cloud platforms, PIVOT
relies on a resource model that captures data locality
attributes and scheduling capabilities that use these attributes
to minimize data movement when possible. Thus, PIVOT is
able to distinguish datasets by the regions and cloud platforms

where they are hosted and place applications accordingly,
hence addressing C2.

Cost-aware scheduling

In this work we are concerned with developing cloud-based
systems that can support big data analysis in a cost-effective
manner (C3). To start, in PIVOT we first consider egress
network traffic cost. Recall that in Section II we quantified
the implications of making decisions that are oblivious to this
cost.

PIVOT leverages the resource model offered by the cloud-
agnostic framework and the data-locality artifacts described
earlier in combination with a generic, pluggable scheduling
framework that is customized to take into account the egress
network traffic cost when making placement decisions. As
we will demonstrate via real experiments, our approach is
effective in reducing the monetary cost of running applications
in cross-cloud environments. Furthermore, we show that a
fine-grained resource model that distinguishes between cloud
regions and platforms is needed to effectively reduce cost.

IV. PIVOT — APPLICATION MODEL

In order to leverage the abstractions, resource models and
the overall architecture in PIVOT we introduce an application
abstraction, namely appliance. An appliance is a software
application with enough operating system to run optimally
in standard compute environments. In PIVOT an appliance
consists of a collection of inter-operating containerized appli-
cations and corresponding configurations.

1 id: sample-appliance

2 containers:

3 - id: appl

4 type: job

5 image: pivot/workflow
6 cmd: /bin/run_workflow
7 resources:

8 cpus: 8

9 mem: 10240

10 disk: 10240

11 gpu: 0O

12 dependencies:

13 - app0

14 data:

15 - dataset.0

16 - dataset.1l

17 - id: app0

18 type: service

19 .

20 scheduler:

21 name: locality-aware
22 config:

23 scalable: true

Listing 1: Sample appliance specification

PIVOT supports two types of applications: (1) A service,
which is a long-running process with a specific functionality,
e.g., web server; and, (2) A job, which is a process or set
of processes typically associated with a bounded temporal
window, e.g., map and reduce jobs. For each application,
a set attributes are specified as shown in Listing 1 including
resource demand (Line 7—11) and data locality (Line 14—16),

which is used by PIVOT to schedule applications. We will
introduce scheduling in PIVOT shortly in Section V-5.

We note that by combining these two types of applications,
PIVOT can support a broad range of computing platforms
consisting of jobs and services with complex dependencies. A
computing platform may consist of a single containerized tool
to complex and sophisticated software stacks. Notably, instead
of handling services and jobs separately, PIVOT allows them
to co-exist and interoperate with each other within a single
appliance as exemplified in Fig. 3. In Section IX we provide
examples of other software stacks that can be deployed on
PIVOT thus demonstrating its extensibility and generality.

Fig. 3: An example of appliance: the workflow launcher waits on the database
and cache server up and running before starting the workflow; the workflow
spawns a number of parallel data analysis jobs that generates output data; the
data visualization job visualizes the output data in observation that all the job
analysis jobs are done; finally, the web server is started to render the visual
after the data visualization job succeeds.

Finally, PIVOT allows users to use customized appliance-
level scheduler for each appliance (Line 20—23 in List-
ing 1) to achieve application-driven scheduling goals. The
schedulers are installed as plug-ins as will be introduced
shortly in Section V-4. Besides, PIVOT also allows users
to provide custom scheduling configuration in the appliance
specification to facilitate the custom appliance-level schedul-
ing at a finer granularity. For instance, as illustrated in List-
ing 1, the locality—-aware scheduler takes a binary value
scalable as the configuration, to determine whether to scale
out containers to other cloud regions/platforms in observation
of resource shortage at the optimal one.

V. SYSTEM MODEL

PIVOT consists of two major components as illustrated
in Fig. 2: the cloud-agnostic framework and the appliance
manager.

1) Cloud-agnostic Framework: The cloud-agnostic frame-
work is underpinned by abstraction mechanisms that hide and
unify the heterogeneity underneath multi-cloud environments.
It can be further organized into: (1) data management layer and
(2) resource management layer. As we describe later in this
section, PIVOT takes an engineering approach to networking.

The cross-cloud infrastructure is built on top of computing,
storage and network resources provisioned in multiple geo-
distributed regions on multiple cloud platforms. Fig. 4 depicts
the geographic footprint of a common setup that we will use
to demonstrate the effectiveness of PIVOT.

2) Resource Management Layer: The resource manage-
ment layer abstracts the geo-distributed, heterogeneous and dy-
namic resources provisioned in the cross-cloud infrastructure
into a single cloud-agnostic resource pool, where resources are
subscribed on-demand at fined granularity, e.g., 1 CPU and
2GB memory. In this layer, container technology offers the
ability to instantiate consistent and isolated runtime environ-
ments for applications regardless of the underlying resource
infrastructure underneath. Hence, containerized applications
can easily migrate among heterogeneous resources in the
cross-cloud infrastructure and provide consistent functionality,
decoupled from specific cloud vendors. The resource manager
coordinates the allocation of resources among applications
with diverse resource demands, and also provides control
knobs for application-driven management. Via these control
knobs, the resource manager delegates high-level resource
scheduling decisions to the appliance manager (described later
in this section). A few generic resource managers such as
Kubernetes [13] and Apache Mesos [2] provide this function-
ality out-of-the-box and therefore can be utilized to implement
this component. Our current implementation of the resource
manager uses Apache Mesos, which is introduced in more
detail in Section VI-A.

3) Data Management Layer: To unify access to data gen-
erated and accessed by applications across disparate heteroge-
neous cloud resources, we introduce a data abstraction layer
that maintains a logical view of the data storage infrastructure.
Through this logical view applications can access and process
data independently of where the data is physically located. At
the heart of this component is a data registry which allows
applications to register metadata associated with data objects
accessible in PIVOT. Metadata contains information about data
objects such as size, physical location, owner, among others,
hence has the potential of enhancing data awareness in the
system. Additionally, the data registry provides a set of APIs
for creating, updating and retrieving metadata entries through
controlled access mechanisms. In PIVOT we use iRODS [12]
to implement this component. Refer to Section VI-B for an
overview of this technology. The functionality can also be
implemented using distributed data storage such as Ceph [5]
and GlusterFS [9] with an additional data registration module
enabled.

4) Appliance Manager: The appliance manager serves as
an interface for users to create and interact with appliances
(Section IV) in PIVOT. Intuitively, this component creates the
illusion of a single monolithic server with the resource and
data abstraction provided by the cloud-agnostic framework.
Internally, it makes application placement and resource allo-
cation decisions for every appliance. The appliance manager
consists of a two-level configurable scheduler: a system-level
scheduler which aims at global optimum; and an appliance-
level scheduler which optimizes for application-driven goals.
In our current implementation, PIVOT delegate the system-
level scheduling tasks to the default scheduler of the resource
orchestrator, i.e., Apache Mesos, which adopts an oppor-
tunistic strategy for application placement. For the appliance-

level scheduler, we have developed a pluggable scheduling
framework in which schedulers are developed and installed
as plug-ins. To enable the pluggable scheduling framework,
PIVOT decouples the scheduler from other modules in the
system and provides a set of APIs for the scheduler to schedule
containers in an appliance. With the scheduling APIs, the
scheduler is able to control the (re)placement of each container
throughout its life cycle and orchestrates among containers
with respect to the dependencies. In order to make scheduling
decisions that take into account data locality, the appliance-
level scheduler obtains information about the availability of
resources and location of data from the resource orchestrator
and data registry, respectively.

To run an appliance on PIVOT, a user submits an appliance
request (Listing 1 as an example) to the appliance manager.
The appliance manager launches an instance of the appliance-
level scheduler specified in the request. The dependencies
included in the request are represented as a directed acyclic
graph (DAG) which is later utilized to drive the scheduling
plan.

With help of the resource and the data management layer,
the appliance-level scheduler identifies the resources that meet
the resource demand requirements and are available to host
the application while respecting its data-locality requirements.
The appliance-level scheduler then generates a scheduling plan
with the resource allocations for the scheduled applications,
and sends it to the system-level scheduler to verify compliance
with global scheduling policies. If compliant, the scheduling
plan is converted into a number of resource requests submitted
to the resource manager for execution. The resource manager
launches the applications on the specific resources as con-
tainers following the resource allocation determined by the
application-level scheduler.

5) Locality-aware scheduling: The goal of locality-aware
scheduling is to place applications close to their input data to
minimize cross-region and cross-cloud data transfers, which
result in low network throughput and high egress network
traffic cost. Optimally, every application should run on the
same region hosting its input datasets. As shown in List-
ing 1, users provide unique identifiers, e.g., UUID, to identify
datasets that are needed by specific applications. The data
management layer relies on the data registry to validate and
map these identifiers to physical locations in the cross-cloud
infrastructure, i.e., cloud regions and platforms. Two situations
arise when scheduling applications: 1) the datasets required by
an application is distributed across multiple cloud regions and
platforms; 2) there is resource shortage in the region hosting
the input datasets.

To address the first challenge, the scheduler calculates the
monetary cost for every possible placement and selects the one
incurring the least cost using the cost function below:

C(p) = Z Mr,p : dp

reR

In this function, p and R denote a potential placement

(i.e., cloud region) of application and the set of cloud regions
hosting the data, respectively. M is a cost matrix that includes
unit monetary cost for network traffic between every pair of
cloud regions. This matrix is fixed and obtained from the
cloud providers. For example, Table I includes the prices
charged by AWS and GCP for traffic transferred between
cloud regions and platforms. d; denotes the total amount of
egress network traffic which is inferred from the data size. The
function calculates a total cost for egress network traffic if the
application is placed at p.

To address the second problem, PIVOT allows users to opt
in/out of scaling appliances across cloud regions (scalable
option in Listing 1). When a user opts-out, applications in
the appliance may have to wait for resources to become
available before being provisioned. Hence, this strategy trades
egress network traffic cost for waiting time (and overall wall
time) of the application. Alternatively, when a user opts-in,
the scheduler invokes the cost function to find the placement
that incurs the second least egress network traffic cost, and
the applications may be provisioned immediately, albeit in a
different region.

One variant of the vanilla locality-aware scheduling strategy
relaxes the constraint of co-locating applications and their in-
put data. Under this strategy, the scheduler places applications
on regions that are nearby the region hosting the data and
hence trades a small monetary cost in egress network traffic
for increased resource availability. To determine candidate
regions, this strategy uses the same function described earlier
in this section and consider regions in an increasing order of
cost.

AWS | GCP
Intra-region 0 0
Cross-region | 0.018 | 0.010
Cross-cloud | 0.090 | 0.120

TABLE I: Average monetary cost ($/GB) for different types of network traffic
among North America regions in AWS and GCP

Network infrastructure in PIVOT. To construct the cross-
Cloud network infrastructure, we face multiple challenges. To
start, there are a multitude of heterogeneous, isolated networks
to be bridged and administered in order to enable network
connectivity among the geo-distributed resources. Most cloud
platforms allocate dynamic public IP addresses to resources,
namely floating IP allocation, further complicating network
management. To address the challenge, we establish a uni-
fied virtual network over the geo-distributed resources across
platforms. The virtual network consists of subnetworks in
every cloud region. To bridge regional subnetworks within the
same cloud, we leverage the network peering (or equivalent)
provided by most cloud providers, which creates optimized
network routes among the subnetworks. To bridge subnetworks
across Clouds, we adopt virtual private network (VPN) tunnel-
ing to enable the communication over the Internet due to its
simplicity and automatability in deployment and maintenance.
We notice the alternative to bridge cross-Cloud subnetworks is
to reserve dedicated network circuits, which improves network

efficiency but incurs IT efforts, and consider it as an ideal
option for long-term, large-scale PIVOT deployment.

V1. UNDERPINNING TECHNOLOGIES

In this section, we provide the reasoning before our choices
of technology to build the software stack of PIVOT. We
note that the architecture of PIVOT (Section V) by design
is generic and extensible and therefore these technologies can
be substituted by others with similar capabilities.

A. Mesos

We use Apache Mesos for resource orchestration across
regions and cloud platforms due to its capability to abstract
heterogeneous, distributed resources. It relies on the container
technology, specifically Docker [7], to instantiate consistent,
isolated runtime for various applications across heterogeneous
resources, eliminating their dependencies on resources and
therefore allowing them to seamlessly migrate heterogeneous
environments. Mesos supports fine-grain sharing of resources
and multi-tenancy. It allows resources on a single host to be
shared among multiple different applications in quantifiable
portions, e.g., 1 CPU, 2GB memory and 2GB disk space.
Mesos adopts a master/slave model, in which the masters
coordinates the resource allocations among the applications,
and the slaves fulfill the allocations and execute the actual
processes of the applications. Additionally, Mesos also en-
ables a constraint-based mechanism for controlling application
placement, which can be leveraged for developing advanced
scheduling algorithm on top. Because of these properties,
we select Mesos as the resource orchestration subsystem for
PIVOT due to its capability in resource abstraction and fine
granularity in resource subscription. We also find Kubernetes
provides a similar set of functionalities, which make it an ideal
replacement for Mesos in PIVOT. However, deploying Mesos
or Kubernetes out-of-the-box in a geo-distributed, cross-cloud
environment is still experimental and yet to be proven effec-
tive [6] [14].

B. iRODS

We introduce the integrated rule-oriented data system
(ARODS) [12] into PIVOT to function as an abstract data
layer over distributed data stored in heterogeneous storage
systems. The iRODS federates distributed and heterogeneous
data into a single logical file system and provides a modular
interface to integrate new client-side applications and server-
side data and compute resources. It also acts as a third-
party mediator providing authentication, authorization and
auditing, optimized data movement protocols and rich support
for metadata at multiple levels of data collections. The iRODS
runs a catalog service that provides APIs for registering and
querying metadata of disparate distributed datasets in a unified
logical namespace, effectively serving an abstract layer for
data management in PIVOT. The iRODS is an open-source
software that serves a broad community including NASA [15],
Bayer [4], Wellcome Trust Sanger Institute [20], the NOAA
among others. We also note that distributed storage systems

such as Ceph and GlusterFS can provide the similar capabili-
ties with additional support in metadata operations.

VII. EVALUATION

To evaluate the effectiveness of our approach we have
deployed a prototype implementation of PIVOT on AWS and
GCP. We use synthetic workloads that are representative of
generic data-intensive applications which would benefit from
data-locality aware scheduling in cross-cloud environments.
We note that non-data-intensive applications are not negatively
impacted by data-locality aware scheduling.

A. Experiment Setup

1) System prototype: The prototype is built on top of
Apache Mesos and iRODS for resource and data management,
respectively. The appliance manager is developed using Python
3. The prototype consists of 20 virtual machine (VM) in-
stances provisioned in ten geographical cloud regions in North
America across AWS and GCP (Fig. 4) with m5.xlarge (4
cores, 16GB memory) and nl-standard-4 (4 cores, 15GB
memory) instances, respectively. The VM instances support
up to 10Gbps network throughput. Each VM is configured
with the Mesos slave and iRODS resource daemons to abstract
compute and data. Additional VMs are set up for the Mesos
master, the iRODS catalog server and the appliance manager.

v
\/\—/ﬁ ca-central-1 / \ZM’{PA

[j ||I|)

" /northamerica-
’ northeast1

" e us-west1
o

us-west-2

00 Q-

us-centrall

B - us-easta
|||| us-west-1 =

us-east-2 us-east-1

Fig. 4: PIVOT deployment across ten North America regions in AWS and
GCP.

2) Scheduling strategies: In our evaluation we consider

three scheduling strategies as follows:

e Locality-oblivious places applications onto any
node with sufficient resources available in an opportunis-
tic manner, regardless of data locality of datasets used by
the applications.

e Locality-aware places applications only on re-
sources that are hosted on the same region than the input
data. Under this strategy, applications may be queued
for an indefinite amount of time waiting for resources
to become available. See Section V-5.

e Locality-aware-scale allows applications to be
placed on non-optimal regions in a best-effort manner.

That is, this strategy considers placing applications on
remote regions while aiming to minimize egress cost. See
Section V-5.

3) Experimental workload: We have synthesized experi-
mental workflows as appliances consisting of data generation
and data processing jobs. The workflow starts with a number
of data generation jobs running at each cloud region, each
of which generates and registers a synthetic dataset into
the data registry. The size of datasets follows a uniform
distribution ranging between 500MB—2GB. Following, the
workflow launches the data processing jobs in parallel, which
ingest and emulate the processing of the synthetic datasets.
The parallelism level of the jobs is configurable and allows
us to evaluate the system under varying loads; the level of
parallelism ranges between 1 and 40 jobs in these experiments.

4) Performance metrics: We focus on the following perfor-
mance metrics for evaluating the performance of the schedul-
ing strategies in PIVOT:

o Network throughput measures the amount of data trans-
ferred from/to a job in a unit of time (per second).
Considering that the time for network I/O is commonly
dominant in the runtime of data-intensive jobs, high
network throughput can result in noticeable runtime re-
duction for individual jobs.

o Monetary cost captures the monetary cost incurred by
utilizing various resources in the cloud, including com-
pute, storage and network resources. In our experiments
we measure the monetary cost by taking an average of
the total cost over the amount of data being transferred
(in gigabytes).

o Walltime measures the time between the starting and
ending time of the appliance. In the case of workflows,
it refers to the duration between the starting time and
ending time of the first and last job, respectively.

B. Results

To evaluate the effectiveness of PIVOT in balancing mone-
tary cost for egress network traffic and network performance
in Fig. 5 we show the average cost for network traffic
incurred by the experimental jobs with both locality-aware
and locality-oblivious scheduling. As it is observed, the use of
locality-aware scheduling strategy saves 67.6% of the cost for
network traffic per GB as compared to the locality-oblivious
scheduling strategy. To better understand these results, Fig. 6)
depicts how different network traffic types compare for both
strategies. We consider three types of network traffic: cross-
cloud, cross-region and intra-region traffic corresponding to
traffic across different cloud providers, different regions within
the same cloud; and, within the same region, respectively.
Our experiments show that when using the locality-aware
scheduling strategy 58.9% of network traffic remains within
the same cloud region, while only < 40% travels across
regions and cloud providers —and hence incurs additional
monetary cost. This is in contrast to when the locality-
oblivious scheduling strategy is used; in which case, 90%
of the overall network traffic flows between cloud regions

and cloud providers. These results follow intuition since the
locality-aware scheduler in PIVOT leverages data locality to
optimally place jobs and minimize cost for network traffic.
Since cloud providers typically do not charge for intra-region
traffic (Table I), the locality-aware scheduler favors placing
jobs within the same region hosting the input data provided
that there are resources available to meet the requirements
of the application. In contrast, under the locality-oblivious
scheduling strategy jobs can be placed onto resources in cloud
regions that are distinct from the region hosting the input data.
As a result, this strategy causes unnecessary network traffic
and results in prohibitive financial cost to the users.

Throughput (Mbp

S)
0 200 600 1000 1200 1400 1600

>0
28 ///////////////////
Sz
-
7% Throughput
= Network traffic cost per GB
>m/
=3
©-2 T I T T T T T T T T T
g2 T T T T P P P P e P ey
93 EENEEEENE SN EREENREEEREEE
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cost ($)

Fig. 5: Average throughput and monetary cost with locality-oblivious and
-aware scheduling

29

58]

Sz

-
=== Cross-Cloud
./\. Cross-region
7 Intra-region

>0

=31

E

0.0 0.2 0.4 1.0

Proportion of network traffic

Fig. 6: Proportions of network traffic with locality-oblivious and -aware
scheduling

Furthermore, Fig. 5 shows that the locality-aware
strategy achieves 4x improvement on average throughput as
compared to the locality-oblivious scheduling strategy. This is
because cloud network infrastructure is optimized for through-
put and latency while WANs connecting cloud regions and
providers are typically outside the cloud provider’s control.
Therefore, by optimizing for cost, the locality-aware scheduler
ensures that network flows remain short and within a region
and exhibit high throughput. To gain further insight into this
observation, Fig. 7 depicts the negative correlation between
egress network traffic cost and throughput in our experimental
setup.

To investigate the impact that scaling an application across
cloud-regions would have on the application performance and

= = N
w o w o
o o o o
o o o o

Throughput (Mbps)

0.04 0.06 0.08 0.10 0.12

Egress network traffic cost per GB ($)

0.00 0.02

Fig. 7: Negative correlation between throughput and network traffic cost

the egress network traffic cost in lieu of waiting for resources
to become available in the optimal region we perform a
comparative experiment of the three scheduling strategies
applied to a job with various levels of concurrency.

Fig. 8 shows the results of these experiment. We observe
that provided with an infinite pool of resources to choose from
the locality-oblivious strategy allows concurrent jobs to benefit
from scaling out at the expense of high egress network traffic
cost. As expected, the locality oblivious strategy exhibits the
highest egress network traffic cost among the three strategies.
The locality-aware strategy on the other hand offers limited
choices for scheduling and therefore the job cannot rip the
benefits of its parallelism. As the figure shows, in this case jobs
queued up due to lack of resources available in the optimal
cloud region and the job experiences the highest walltime as
compared to the other two strategies. Finally, the locality-
aware scale strategy strikes a balance between egress network
traffic cost and the ability of the application to take advantage
of concurrency by being presented with more resources to
utilize for scaling the application while being sensitive to
egress network traffic cost. As the figure shows, this strategy
exhibits the lowest walltime and a low egress network traffic
cost up to an inflection point when the strategy maxes out

—e—Locality-aware Locality-oblivious —¥—Locality-aware-scale
Intra-Cloud Cross-Cloud

e il

= =N
o U o
o o o

Walltime
(seconds)

u
o

o o
o o
I I

e
o
N

Average monetary
cost ($/GB)

4 8 12 16 20 24 28 32 36 40
Level of parallelism

b
o
S
[
q

Fig. 8: Comparison of end-to-end runtime and network traffic cost with
different scheduling strategies as job concurrency increases

its ability to leverage resources across clouds incurring data
movement and higher egress network traffic cost. Therefore,
the locality-aware scale strategy is a cost-effective scheduling
strategy .

To gain further insight into the effectiveness of the schedul-
ing strategies in Fig. 9a and Fig. 9b we show the cumu-
lative distribution function for throughput and number of
running concurrent tasks per appliance, respectively. We note
that in the case of the locality-aware scheduling strategy
in more than 80% of the time the number of concurrent
running jobs is < 20% more as a result of queuing jobs in
the local cloud provider. Both the locality-aware-scale and
locality-oblivious strategy however show an even
distribution of concurrent jobs over time as seen in Fig. 9b.
As expected, throughput reduces due to the cross-cloud region
network traffic resulting from running computation across the
cloud regions.

We note that the locality-aware scale strategy yields the
highest throughput at a negligible egress network traffic cost.
However, due to the fact that the locality—-aware schedul-
ing strategy is limited to place jobs on resources that are in
the same region hosting the input data as depicted in Fig. 9b,
> 70% of jobs are queued-up during 80% of the runtime
of the appliances. In contrast, the locality-oblivious
scheduler is able to scale jobs out to utilize idle resources
in other cloud regions and take advantage of parallelizing
compute at the expense of a high egress network traffic cost
as compared to the other the scheduling strategies due to is
inability to take into account data locality information. We
note that the locality-aware—-scale scheduling strategy
strikes a balance between data locality and job scalability
by trading data-locality for walltime. As a result, it rep-
resents a cost-effective scheduling strategy as compared to
locality-aware and locality-oblivious strategies
in circumstances where cloud resources are limited — which
is common in practice.

VIII. RELATED WORK

Geo-distributed computation. A number of recent research
works identify the great demand for running applications
at scale in geo-distributed environments [23] [33] [27] and
seek to address a variety of challenges in these environ-
ments [28] [35] [38] [32]. It has been recognized as a major
challenge [35] [40] [41] that substantial data transfers incurred
among applications running on geo-distributed resources cre-
ate the performance bottleneck due to the inefficiency of data
transfers over WANSs. JetStream [35] proposes to perform
data pre-processing on data sources and send only partially
aggregated data for central processing, reducing the amount
of network traffic incurred over WANs. However, this work
is limited to applications dominated by data aggregation
processes. Other research efforts [34] [29] [32] [22] [30]
tackle the problem by exploiting data locality and co-locating
data and applications to avoid remote data transfers over
WANS. Iridium [34] introduces an online heuristic that ap-
proximates the optimal co-location of data analytic jobs and

1.0 1.0
0.8 0.8
0.6 0.6
w
o
O
0.4 0.4
0.2
0.2 —8— Locality-aware
Locality-oblivious
—%¥— Locality-aware-scale
0.0 % T T T r "
0.0 0 02 04 06 08 1.0
0 2000 4000

Proportion of concurrent

Throughput (Mbps) running jobs

() (b)

Fig. 9: Throughput and proportion of concurrently running jobs with different
scheduling strategies

datasets, effectively shortening the response time for data
analytic queries upon geo-distributed datasets. DRASH [22]
and Cachalot [31] dynamically replicate and cache commonly
used datasets across geo-distributed resources to enhance data
locality. AWAN [32] takes advantage of explicit job runtime
and data placement provided by users to optimize data locality
for jobs executed on geo-distributed resources, effectively min-
imizing average job completion time. However, these works
mostly focus on the performance aspect of geo-distributed
applications but seldom the cost aspect, which is equally
crucial in cloud-based, geo-distributed environments especially
with resources provisioned and budgeted by multiple cloud
vendors.

Cloud agnosticism. Only few works in research literature ex-
plore the possibility to build cross-cloud, geo-distributed sys-
tems to enable cloud agnosticism. In [26] the authors recognize
the necessity of developing multi-cloud systems and classify a
stack of cloud solutions for easing the heterogeneity and lack
of interoperability among cloud platforms. [36] [37] introduce
multi-cloud storage systems that secure outsourced data in
the Cloud with bandwidth and cost efficiency. Nevertheless,
these solutions address the problem in a piecemeal fashion.
This is in contrast to our holistic approach in PIVOT wherein
an integrated and end-to-end solution has been developed
to address the problem in a much more comprehensive and
pragmatic manner. Container orchestration systems, such as
Apache Mesos and Kubernetes, exhibit a great potential to
serve as an resource abstraction layer over resources geo-
distributed regions and cloud platforms to support a diversity
of applications. However, they lack the capability for enabling
data awareness for the system and applications running on top,
which are proven essential in geo-distributed environment.

IX. FUTURE APPLICATIONS IN PIVOT

Designed as a generic computing platform, PIVOT imposes
minimal restrictions on the composition and scheduling of

appliances. We promote customizable, pluggable scheduler in
PIVOT to satisfy varying scheduling demands. Moreover, ex-
isting computing systems and framework (e.g., Apache Spark)
can be easily refactored into containers and run as an appliance
on PIVOT. Therefore, a variety of legacy applications can be
seamlessly ported onto PIVOT without any changes. Following
that we present two real-world use cases of running existing
data-intensive applications across clouds on PIVOT.

A. Use Case 1: Apache Spark appliance

A use case of PIVOT is to create a workspace for scientists
to run large-scale genomic analytic applications using the geo-
distributed resources. With most of the applications developed
using the API of Apache Spark, it requires substantial code
changes to convert them into appliances directly running
on PIVOT. Instead, we run the Spark cluster as an appli-
ance with a number of containerized services. In this case,
PIVOT only allocates resources to the services per request
but delegates the task scheduling to the framework, i.e., the
scheduler of Apache Spark. To instantiate the Spark appliance,
PIVOT is able to co-locate the services (e.g., workers) with the
data repository based on the logical identifier of data specified
in the appliance request. Within the appliance, the existing
applications can be executed by interfacing with the Spark
appliance without any code changes; legacy scheduling algo-
rithms can also be applied directly in the appliance. Moreover,
the Spark appliance can still take advantage of the data-locality
facilities in PIVOT to enhance the scheduling algorithm —
the Spark scheduler can query the data registry for metadata
of datasets and make scheduling decisions accordingly. This
approach for migrating existing applications onto PIVOT can
be extrapolated to computing frameworks such as Hadoop [1],
Mesos and HTCondor [11] among many others.

B. Use Case 2: Cross-cloud execution of genomic workflow

We are also developing appliances for enabling cross-
cloud execution of genomic workflows, e.g., exomic alignment
workflow, in PIVOT. The genomic workflows typically ingest
terabytes of geo-distributed datasets hosted on various cloud
platforms, which are intrinsically difficult to be moved around
for centralized processing. Besides, many existing genomic
workflows are encoded in Common Workflow Language
(CWL) [21] and runnable on the Toil workflow engine. To
leverage the locality-aware scheduling in PIVOT, we inte-
grate PIVOT as the batch system at the backend of Toil for
scheduling and executing the workflow jobs. With the genomic
datasets registered in PIVOT and referenced in the workflow
specifications, PIVOT is able to scale the workflows across
geo-distributed regions across clouds and place the jobs close
to the input datasets for improved performance in network I/O
and reduced cost for egress network traffic.

X. CONCLUSION

We have presented PIVOT, a generic geo-distributed, cross-
cloud computing platform for running data-intensive applica-
tions with awareness of data locality. We have designed a

loosely coupled architecture across cloud platforms to enable
cloud agnosticism. Moreover, we have developed a locality-
aware scheduling algorithm to improve data locality of ap-
plications, therefore improving network performance of data
transfers and reducing monetary cost for egress network traffic.
Our evaluation demonstrates that PIVOT is able to achieve
up to 4x improvement in network throughput and > 60%
saving in the cost for egress network traffic as compared to
the baseline.

ACKNOWLEDGMENT

This work is supported by the NSF SciDAS project (ACI
#1659300) and the NIH Data Commons Cloud Pilot Phase 1
(OT3 ODO025464-01).

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]
(17]
(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

Apache Hadoop. http://hadoop.apache.org/.

Apache Mesos. http://mesos.apache.org/.

Arvados. https://arvados.org/.

Bayer. https://www.bayer.com/.

Ceph. https://ceph.com/.

DC/OS HA. https://docs.mesosphere.com/1.10/installing/oss/high-
availability/multi-region/.

Docker. https://www.docker.com/.

Galaxy. https://usegalaxy.org/.

GlusterFS. https://redhatstorage.redhat.com/products/glusterfs/.

Google Genomics. https://cloud.google.com/genomics/.

HTCondor. https://research.cs.wisc.edu/htcondor/index.html.

iRODS. https://irods.org/.

Kubernetes. https://kubernetes.io/.

Kubernetes Federation. https://kubernetes.io/docs/concepts/cluster-
administration/federation/.

NASA. https://www.nasa.gov/.

National Institutes of Health. https://www.nih.gov/.

National oceanic and atmospheric administration. http://www.noaa.gov/.
Registry of Open Data on AWS. https://registry.opendata.aws/noaa-
nexrad/.

Social Alteration Google
http://socialalterations.com/googleearth/.
Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/.

Peter Amstutz, Robin Andeer, Brad Chapman, John Chilton, Michael R
Crusoe, Roman Valls Guimera, Guillermo Carrasco Hernandez, Sinisa
Ivkovic, Andrey Kartashov, John Kern, et al. Common workflow
language, draft 3. 2016.

M. W. Convolbo, J. Chou, S. Lu, and Y. C. Chung. DRASH: A Data
Replication-Aware Scheduler in Geo-Distributed Data Centers. In 2016
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pages 302-309, December 2016.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, and Peter Hochschild. Spanner: Googles globally
distributed database. ACM Transactions on Computer Systems (TOCS),
31(3):8, 2013.

Ewa Deelman, Karan Vahi, Mats Rynge, Gideon Juve, Rajiv Mayani,
and Rafael Ferreira da Silva. Pegasus in the cloud: Science automation
through workflow technologies. IEEE Internet Computing, 20(1):70-76,
2016.

W. Dou, X. Zhang, J. Liu, and J. Chen. HireSome-II: Towards Privacy-
Aware Cross-Cloud Service Composition for Big Data Applications.
IEEE Transactions on Parallel and Distributed Systems, 26(2):455-466,
February 2015.

Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and
Arnor Solberg. Towards Model-Driven Provisioning, Deployment,
Monitoring, and Adaptation of Multi-cloud Systems. pages 887-894,
June 2013.

Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan,
Kevin Lai, Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar,
and Ankur Agiwal. Mesa: Geo-replicated, near real-time, scalable data
warehousing. Proceedings of the VLDB Endowment, 7(12):1259-1270,
2014.

Earth (SAGE).

10

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

(39]

[40]

[41]

Mohammad Hajjat, David Maltz, Sanjay Rao, and Kunwadee Sripanid-
kulchai. Dealer: application-aware request splitting for interactive cloud
applications. In Proceedings of the 8th international conference on
Emerging networking experiments and technologies, pages 157-168.
ACM, 2012.

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. Gaia: Geo-
Distributed Machine Learning Approaching LAN Speeds. page 21.
Chien-Chun Hung, Leana Golubchik, and Minlan Yu. Scheduling jobs
across geo-distributed datacenters. pages 111-124. ACM Press, 2015.
Fan Jiang, Claris Castillo, and Stan Ahalt. Cachalot: A network-
aware, cooperative cache network for geo-distributed, data-intensive
applications. In NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2018.

Albert Jonathan, Abhishek Chandra, and Jon Weissman. Awan: Locality-
aware Resource Manager for Geo-distributed Data-intensive Applica-
tions. page 12.

Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. MDCC: Multi-data center consistency. In Proceedings of the
8th ACM European Conference on Computer Systems, pages 113—126.
ACM, 2013.

Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,
Aditya Akella, Paramvir Bahl, and Ion Stoica. Low Latency Geo-
distributed Data Analytics. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’15,
pages 421434, New York, NY, USA, 2015. ACM.

Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, and Michael J.
Freedman. Aggregation and Degradation in JetStream: Streaming
Analytics in the Wide Area. In NSDI, volume 14, pages 275-288, 2014.
Y. Singh, F. Kandah, and Weiyi Zhang. A secured cost-effective
multi-cloud storage in cloud computing. In 2011 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages
619-624, April 2011.

Emil Stefanov and Elaine Shi. Multi-cloud Oblivious Storage. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS 13, pages 247-258, New York, NY,
USA, 2013. ACM.

Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella.
CLARINET: WAN-Aware Optimization for Analytics Queries. In OSDI,
volume 16, pages 435-450, 2016.

John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher
Ketchum, Joel Armstrong, Adam Novak, Jacob Pfeil, Jake Narkizian,
Alden D Deran, Audrey Musselman-Brown, Hannes Schmidt, Peter
Amstutz, Brian Craft, Mary Goldman, Kate Rosenbloom, Melissa Cline,
Brian O’Connor, Megan Hanna, Chet Birger, W James Kent, David A
Patterson, Anthony D Joseph, Jingchun Zhu, Sasha Zaranek, Gad Getz,
David Haussler, and Benedict Paten. Toil enables reproducible, open
source, big biomedical data analyses. Nature Biotechnology, 35:314 EP
—, 04 2017.

Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jung-
blut, Konstantinos Karanasos, Jitendra Padhye, and George Varghese.
Wanalytics: Geo-distributed analytics for a data intensive world. In
Proceedings of the 2015 ACM SIGMOD international conference on
management of data, pages 1087-1092. ACM, 2015.

Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jung-
blut, Jitu Padhye, and George Varghese. Global Analytics in the Face
of Bandwidth and Regulatory Constraints. In NSDI, volume 7, pages
7-8, 2015.

